Получение кремния в промышленности – Кремний

Кремний

image
Процессор? Песок? А какие у вас с этим словом ассоциации? А может Кремниевая долина?
Как бы там ни было, с кремнием мы сталкиваемся каждый день и если вам интересно узнать что такое Si и с чем его едят, прошу под кат.

Введение

Будучи студентом, одного из московских вузов, с специальностью «Наноматериалы», я хотел познакомить тебя, дорогой читатель, с самыми важными химическими элементами нашей планеты. Я долго выбирал с чего начать, углерод или кремний, и все таки решил остановиться именно на Si, потому что сердце любого современного гаджета основано именно на нем, если можно так выразиться конечно. Излагать мысли постараюсь предельно просто и доступно, написав этот материал я рассчитывал, в основном на новичков, но и более продвинутые люди смогут почерпнуть что-то интересное, так же хотелось бы сказать, что статья написана исключительно для расширения кругозора заинтересовавшихся. И так приступим.

Silicium

Кремний (лат. Silicium), Si, химический элемент IV группы периодической системы Менделеева; атомный номер 14, атомная масса 28,086.
В природе элемент представлен тремя стабильными изотопами: 28Si (92,27%), 29Si (4,68%) и 30Si (3,05%).
Плотность (при н.у.) 2,33 г/см?
Температура плавления 1688 K
image
Порошковый Si

Историческая справка

Соединения Кремния, широко распространенные на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений Кремния, связанное с их переработкой, — изготовление стекла — началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение Кремния — оксид SiO2 (кремнезем). В 18 веке кремнезем считали простым телом и относили к «землям» (что и отражено в его названии). Сложность состава кремнезема установил И. Я. Берцелиус. Он же впервые, в 1825, получил элементарный Кремний из фтористого кремния SiF4, восстанавливая последний металлическим калием. Новому элементу было дано название «силиций» (от лат. silex — кремень). Русское название ввел Г. И. Гесс в 1834.

image
Кремний очень распространен в природе в составе обыкновенного песка

Распространение Кремния в природе

По распространенности в земной коре Кремний — второй (после кислорода) элемент, его среднее содержание в литосфере 29,5% (по массе). В земной коре Кремний играет такую же первостепенную роль, как углерод в животном и растительном мире. Для геохимии Кремния важна исключительно прочная связь его с кислородом. Около 12% литосферы составляет кремнезем SiO2 в форме минерала кварца и его разновидностей. 75% литосферы слагают различные силикаты и алюмосиликаты (полевые шпаты, слюды, амфиболы и т. д.). Общее число минералов, содержащих кремнезем, превышает 400.

Физические свойства Кремния

Думаю тут останавливаться особо не стоит, все физические свойства имеются в свободном доступе, а я же перечислю самые основные.

Температура кипения 2600 °С
Кремний прозрачен для длинноволновых ИК-лучей
Диэлектрическая проницаемость 11,7
Твердость Кремния по Моосу 7,0
Хотелось бы сказать, что кремний хрупкий материал, заметная пластическая деформация начинается при температуре выше 800°С.
Кремний — полупроводник, именно поэтому он находить большое применение. Электрические свойства кремния очень сильно зависят от примесей.

Химические свойства Кремния

Тут много конечно можно сказать, но остановлюсь на самом интересном. В соединениях Si (аналогично углероду) 4-валентен.
На воздухе кремний благодаря образованию защитной оксидной пленки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400 °С, образуя оксид кремния (IV) SiO2.

Кремний устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот, легко растворяется в горячих растворах щелочей с выделением водорода.
Кремний образует 2 группы кислородсодержащих силанов — силоксаны и силоксены. С азотом Кремний реагирует при температуре выше 1000 °С, Важное практическое значение имеет нитрид Si3N4, не окисляющийся на воздухе даже при 1200 °С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, а так же для производства огнеупоров. Высокой твердостью, а также термической и химической стойкостью отличаются соединения Кремния с углеродом (карбид кремния SiC) и с бором (SiB3, SiB6, SiB12).

Получение Кремния

Я думаю это самая интересная часть, тут остановимся поподробнее.
В зависимости от предназначения различают:
1. Кремний электронного качества (т. н. «электронный кремний») — наиболее качественный кремний с содержанием кремния свыше 99,999 % по весу, удельное электрическое сопротивление кремния электронного качества может находиться в интервале примерно от 0,001 до 150 Ом•см, но при этом величина сопротивления должна быть обеспечена исключительно заданной примесью т. е. попадание в кристалл других примесей, хотя бы и обеспечивающих заданное удельное электрическое сопротивление, как правило, недопустимо.

2. Кремний солнечного качества (т. н. «солнечный кремний») — кремний с содержанием кремния свыше 99,99 % по весу, используемый для производства фотоэлектрических преобразователей (солнечных батарей).
image
3. Технический кремний — блоки кремния поликристаллической структуры, полученного методом карботермического восстановления из чистого кварцевого песка; содержит 98 % кремния, основная примесь — углерод, отличается высоким содержанием легирующих элементов — бора, фосфора, алюминия; в основном используется для получения поликристаллического кремния.

Кремний технической чистоты (95-98%) получают в электрической дуге восстановлением кремнезема SiO2 между графитовыми электродами. В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого кремния. Это требует предварительного синтеза чистейших исходных соединений кремния, из которых кремний извлекают путем восстановления или термического разложения.
Поликристаллический кремний («поликремний») — наиболее чистая форма промышленно производимого кремния — полуфабрикат, получаемый очисткой технического кремния хлоридными и фторидными методами и используемый для производства моно- и мультикристаллического кремния.
Традиционно поликристаллический кремний получают из технического кремния путём перевода его в летучие силаны (моносилан, хлорсиланы, фторсиланы) с последующими разделением образующихся силанов, ректификационной очисткой выбранного силана и восстановлением силана до металлического кремния.

Чистый полупроводниковый кремний получают в двух видах: поликристаллический (восстановлением SiCl4 или SiHCl3 цинком или водородом, термическим разложением SiI4 и Sih5) и монокристаллический (бестигельной зонной плавкой и «вытягиванием» монокристалла из расплавленного кремния — метод Чохральского).
image
Тут можно увидеть процесс выращивания кремния, методом Чохральского.

Метод Чохральского — метод выращивания кристаллов путём вытягивания их вверх от свободной поверхности большого объёма расплава с инициацией начала кристаллизации путём приведения затравочного кристалла (или нескольких кристаллов) заданной структуры и кристаллографической ориентации в контакт со свободной поверхностью расплава.

Применение Кремния

Специально легированный кремний широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, тиристоры; солнечные фотоэлементы, используемые в космических кораблях, а так же много всякой всячины).
Поскольку кремний прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике.

Кремний имеет разнообразные и все расширяющиеся области применения. В металлургии Si
используется для удаления растворенного в расплавленных металлах кислорода (раскисления).
Кремний является составной частью большого числа сплавов железа и цветных металлов.
Обычно Кремний придает сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании Кремний может вызвать хрупкость.
Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие rремний.
Кремнезем перерабатываются стекольной, цементной, керамической, электротехнической и других отраслями промышленности.
Сверхчистый кремний преимущественно используется для производства одиночных электронных приборов (например процессор твоего компьютера) и однокристальных микросхем.
Чистый кремний, отходы сверхчистого кремния, очищенный металлургический кремний в виде кристаллического кремния являются основным сырьевым материалом для солнечной энергетики.
Монокристаллический кремний — помимо электроники и солнечной энергетики используется для изготовления зеркал газовых лазеров.

image
Сверхчистый кремний и продукт его производства

Кремний в организме

Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твердых скелетных частей и тканей. Особенно много кремния могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения оксида кремния (IV). В холодных морях и озерах преобладают биогенные илы, обогащенные кремнием, в тропических морях — известковые илы с низким содержанием кремния. Среди наземных растений много кремния накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание оксида кремния (IV) в зольных веществах 0,1-0,5%. В наибольших количествах кремний обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г кремния. При высоком содержании в воздухе пыли оксида кремния (IV) она попадает в легкие человека и вызывает заболевание — силикоз.

Заключение

Ну вот и все, если вы дочитали до конца и немного вникли, то вы на шаг ближе к успеху. Надеюсь писал я не зря и пост понравился хоть кому-то. Спасибо за внимание.

Автор: Kirill143

www.pvsm.ru

Кремний — Знаешь как

Содержание статьи

(Silicium), Si — хим. элемент IV группы периодической системы элементов; ат. н. 14, ат. м. 28,086. Кристаллический кремний— темно-серое вещество со смолистым блеском. В большинстве соединений проявляет степени окисления — 4, +2 и +4. Природный кремний состоит из стабильных изотопов 28Si (92,28%), 29Si (4,67%) и 30Si (3,05%). Получены радиоактивные изотопы 27Si, 31Si и 32Si с периодами полураспада соответственно 4,5 сек, 2,62 ч и 700 лет. К. впервые выделен в 1811 франц. химиком и физиком Ж. Л. Гей-Люссаком и франц. химиком Л. Ж. Тенаром, но идентифицирован лишь в 1823 швед, химиком и минералогом Й. Я. Берцелиусом.

 

По распространенности в земной коре (27,6%) Кремний— второй (после кислорода) элемент. Находится преим. в форме кремнезема Si02 и др. кислородсодержащих веществ (силикатов, алюмосиликатов и т. д.). При обычных условиях образуется стабильная полупроводниковая модификация К., отличающаяся гранецентрированной кубической структурой типа алмаза, с периодом а = 5,4307 А. Межатомное   расстояние   2,35   А. Плотность 2,328 г\см. При высоком давлении (120—150 кбар)переходит в более плотные полупроводниковые и металлическую модификации. Металлическая модификация-сверхпроводник с т-рой перехода 6,7 К. С ростом давления точка плавления понижается с 1415 ± 3° С при давлении 1 бар до 810° С при давлении  15 • 104  бар  (тройная точка сосуществования    полупроводникового, металлического и жидкого К.). При плавлении происходят увеличение координационного числа и металлизация межатомных связей. Аморфный кремний по характеру ближнего порядка, отвечающего сильно искаженной объемноцентрированной кубической структуре, близок к жидкому. Дебаевская т-ра близка к 645 К. Коэфф. температурного линейного расширения изменяется с изменением т-ры по экстремальному закону, ниже т-ры 100 К он становится отрицательным, достигая минимума (—0,77 · 10-6) град-1 при т-ре 80 К; при т-ре 310 К он равен 2,33 · 10-6 град-1, а при т-ре 1273 К —4,8 · 10 град-1. Теплота плавления 11,9 ккал/г-атом;tкип.3520 К.

 

Теплота   сублимации   и  испарения при т-ре плавления соответственно 110 и 98,1  ккал/г-атом.  Теплопроводность  и электропроводность кремния зависят от чистоты и совершенства кристаллов. С ростом т-ры коэфф. теплопроводности чистого К. вначале увеличивается   (до   8,4   кал/см X X сек · град при т-ре 35 К), а затем убывает,    достигая   0,36   и   0,06 кал/см · сек · град   при   т-ре   соответственно 300 и 1200 К. Энтальпия, энтропия и теплоемкость К. в стандартных условиях равны соответственно 770 кал/г-атом, 4,51 и 4,83 кал/г-атом — град.  Кремний диамагнитен, магнитная восприимчивость твердого (—1,1 · 10-7 э.м.е./г) и жидкого (—0,8 · 10-7    э.м.е./г). Кремний слабо зависит от т-ры. Поверхностная энергия, плотность  и  кинематическая   вязкость жидкого К. при т-ре плавления составляют 737 эрг/см2, 2,55 г/см3 и 3 · 10 м2/сек. Кристаллический кремния типичный полупроводник с шириной запрещенной зоны 1,15 эв при т-ре 0 К и 1,08 эв — при т-ре 300 К. При комнатной т-ре концентрация собственных носителей зарядов близка к 1,4 · 1010 см-3 , эффективная подвижность электронов и дырок — соответственно 1450 и 480 см2/в · сек, а удельное электрическое сопротивление — 2,5 · 105 ом · см. С ростом т-ры они изменяются по экспоненциальному закону.

 

Электро свойства кремния зависят от природы и концентрации примесей, а также от совершенства кристалла. Обычно для получения полупроводникового К. с проводимостью р- и n-типа его легируют элементами IIIв (бором, алюминием, галлием) и Vв (фосфором, мышьяком, сурьмой, висмутом) подгрупп, создающими совокупность соответственно акцепторных и донорных уровней, расположенных вблизи границ зон. Для легирования используют и др. элементы (напр., золото), формирующие т. и. глубокие уровни, к-рые обусловливают захват и рекомбинацию носителей зарядов. Это позволяет получать материалы с высоким электр. сопротивлением (1010 ом · см при т-ре 80 К) и небольшой продолжительностью существования неосновных носителей зарядов, что важно для увеличения быстродействия различных устройств. Коэфф. термоэдс кремния существенно зависит от т-ры и содержания примесей, увеличиваясь с ростом электросопротивления (при р = 0,6 ом — см, а = 103 мкв/град). Диэлектрическая проницаемость кремния (от 11 до 15) слабо зависит от состава и совершенства монокристаллов. Закономерности оптического поглощения кремния сильно изменяются с изменением его чистоты, концентрации и характера дефектов строения, а также длины волны.

Граница непрямого поглощения электромагнитных колебаний близка к 1,09 эв, прямого поглощения — к 3,3 эв. В видимой области спектра параметры комплексного показателя преломления (n — ik) весьма существенно зависят от состояния поверхности и наличия примесей. Для особо чистого К. (при λ = 5461 А и т-ре 293 К) n = 4,056 и к = 0,028. Работа выхода электронов близка к 4,8 эв. Кремний хрупок. Его твердость (т-ра 300 К) по Моосу — 7; НВ = 240; HV щ = 103; И = 1250 кгс/мм2; модуль норм, упругости (поликристалла) 10 890 кгс/мм2. Предел прочности зависит от совершенства кристалла: на изгиб от 7 до 14, на сжатие от 49 до 56 кгс/мм2; коэфф. сжимаемости 0,325 • 1066 см2/кг.

 

При комнатной т-ре кремний практически не взаимодействует с газообразными (исключая фтор) и твердыми реагентами, кроме щелочей. При повышенной т-ре активно взаимодействует с металлами и неметаллами. В частности, образует карбид SiC (при т-ре выше 1600 К), нитрид Si3N4 (при т-ре выше 1300 К), фосфид SiP (при т-ре выше 1200 К) и арсениды Si As, SiAS2 (при т-ре выше 1000 К). С кислородом реагирует при т-ре выше 700 К, образуя двуокись Si02, с галогенами — фторид SiF4 (при т-ре выше 300 К), хлорид SiCl4 (при т-ре выше 500 К), бромид SiBr4 (при т-ре 700 К) и нодид SiI4 (при т-ре 1000 К). Интенсивно реагирует со мн. металлами, образуя твердые растворы замещения в них или  хим.   соединения — силициды. Концентрационные области гомогенности  твердых  растворов   зависят от природы растворителя (напр., в германии от 0 до 100%, в железе до 15%, в альфа-цирконии менее 0,1%). 

 

Растворимость металлов и неметаллов в твердом кремне значительно меньше и обычно ретроградна. При  этом  предельные содержания примесей, создающих в К. неглубокие уровни, достигают максимума (кислород 2 · 1018, азот 1019, алюминий 2 · 1019, фосфор 1021, мышьяк 2 · 1021 см ) в области т-р от 1400 до 1600 К. Примеси с глубокими уровнями отличаются заметно меньшей растворимостью (от 1015 для селена и 5 · 1016 для железа до 7 · 10 17 для никеля и 10 18 см-3 для меди). В жидком состоянии кремний неограниченно смешивается со всеми металлами, часто с весьма большим выделением тепла. Чистый кремний готовят   из   технического    продукта 99% Si и по — 0,03% Fe, Аl и Со), получаемого восстановлением кварца углеродом в электро печах. Вначале из него отмывают к-тами (смесью соляной и серной, а затем фтористоводородной и серной) примеси, после чего полученный продукт (99,98%) обрабатывают хлором. Синтезированные хлориды очищают дистилляцией.

 

Полупроводниковый кремний получают восстановлением хлорида SiCl4 (или SiHCl3) водородом или термическим разложением гидрида Sih5. Окончательную очистку и выращивание монокристаллов осуществляют бестигельной зонной плавной или по методу Чохральского, получая особо чистые слитки (содержание примесей до 1010—1013 см-3) ср > 10 3 ом · см. В зависимости от назначения К. в процессе приготовления хлоридов или при выращивании монокристаллов в них вводят дозированные   количества   необходимых примесей. Так готовят цилиндрические слитки диаметром 2— 4 и длиной 3—10 см. Для спец. целей выпускают  и более  крупные монокристаллы. Технический кремний и особенно его сплавы с железом используют в качестве раскислателей стали и восстановителей, а также легирующих присадок.  Особо чистые образцы монокристаллического К., легированного различными элементами, находят применение в качестве основы разнообразных слаботочных (в частности, термоэлектрических, радио-,   свето- и фототехнических) и сильноточных (выпрямители,   преобразователи)   устройств.

 

Силиций или кремний

Кремний относится к неметаллам , его атомы на внешнем энергетическом уровне имеют 4 электрона . Он может отдавать их , проявляя степень окисления + 4 , и присоединять электроны , проявляя степень окисления — 4 . Однако способность присоединять электроны у кремния значительно меньше , чем у углерода . Атомы кремния имеют большой радиус , чем атомы углерода .

 

Нахождение кремния в природе

Кремний очень распространён в природе . на его долю приходится свыше 26% массы земной коры . По распространённости он занимает второе место ( после кислорода ) . В отличие от углерода C  в свободном состоянии в природе не встречается . Он входит  в состав различных химических соединений , в основном разных модификаций оксида кремния ( IV ) и солей кремниевых кислот ( силикатов ) .

Получение кремния

В промышленности кремний технической чистоты ( 95 — 98% ) получают , восстанавливая кварц SiO2 коксом в электрических печах при прокаливании :

 

SiO2 + 2C = Si + 2CO

 

 

SiO2 + 2Mg = Si + 2MgO

 

Таким способом получают аморфный с примесями порошок кремния бурого цвета . Перекристаллизацией из расплавленных металлов ( Zn , Al ) его можно перевести в кристаллическое состояние .

Для полупроводниковой техники кремний очень высокой чистоты  получают , восстановлением при 1000°C тетрахлорид кремния SiCl4 парами цинка :

 

SiCl4 + 2Zn = Si + 2ZnCl2

 

и очищая его после этого специальными методами .

 

Физические и химические свойства кремния

Чистый кристаллический кремний — хрупкий и твёрдый , царапает стекло . Подобно алмазу , он имеет кубическую кристаллическую решётку с ковалентным типом связи . Температура плавления его 1423 °C . При обычных условиях кремний малоактивный элемент , соединяется только с фтором , но при нагревании вступает в различные химические реакции .

Его используют как ценный материал в полупроводниковой технике . По сравнению с другими полупроводниками он отличается значительной стойкость против действия кислот и способностью сохранять большое электрическое сопротивление до 300°C . Технический кремний и ферросилиций используют также в металлургии для производства жароустойчивых , кислотоустойчивых и инструментальных сталей , чугунов и многих других сплавов .

С металлами кремний образует химические соединения , называемые силицидами , при нагревании с магнием образуется силицид магния :

 

Si + 2Mg = Mg2Si

 

Силициды металлов по структуре и свойствам напоминают карбиды , так металлоподобные силициды , так же как и металлоподобные карбиды , отличаются большой твёрдостью, высокой температурой плавления, хорошей электропроводностью.

При прокаливании смеси песка с коксом в электрических печах образуется соединения кремния с углеродом — карбид кремния , или карборунд :

 

SiO2 + 3C = SiC + 2CO

 

Карборунд — тугоплавкое бесцветное твёрдое вещество , ценный абразивными и жароустойчивым материалом . Карборунд , как и алмаз , имеет атомную кристаллическую решётку. В чистом состоянии — это изолятор , но в присутствии примесей становится полупроводником .

 

Кремний как и углерод , образует два оксида : оксид кремния ( II ) SiO и оксид кремния ( IV ) SiO2 . Оксид кремния ( IV ) — твёрдое тугоплавкое вещество , широко распространённое в природе в свободном состоянии . Это химически устойчивое вещество , взаимодействует только со фтором и газообразным фтористым водородом или плавиковой кислотой :

 

SiO2 + 2F2 = SiF4 + O2

 

SiO2 + 4HF = SiF4 + 2h3O

 

Приведённое направление реакций объясняется тем , что кремний имеет большое сродство к фтору . Кроме того , тетрафторид кремния — летучее вещество .

 

В технике прозрачный кварц SiO2 используют для изготовления устойчивого тугоплавкого кварцевого стекла , которое хорошо пропускает ультрофиалетовые лучи , имеет большой коэффицент расширения , поэтому выдерживает значительные мгновенные изменения температуры . Аморфная модификация оксида кремния ( II ) трепел — имеет большую пористость . Его используют как тепло и звукоизолятор , для производства динамита ( носитель взрывчатого вещества ) и так далее . Оксид кремния ( IV ) в виде обычного песка — один из основных строительных материалов . Его используют в производстве огнестойких и кислотостойких материалов , стекла , как флюс в металлургии и так далее .

 

Сравнимая молекулярные формулы , химические и физические свойства оксида углерода ( IV ) и оксида кремния ( IV ) , легко увидеть , что свойства этих сходных по химическому составу соединений различны . Это объясняется тем , что оксид кремния (IV    ) состоит не просто из молекул SiO2 , а из их ассоциатов , в которых атомы кремния соединяются между собой атомами кислорода . Оксиду кремния ( IV ) ( SiO2 )n .Изображение её на плоскости такое :

 

                                          ¦            ¦           ¦

                                         O          O         O

                                          ¦            ¦           ¦

                              — O  — Si — O — Si — O — Si — O —

                                         ¦            ¦            ¦

                                        O          O         O

                                         ¦            ¦            ¦

                              — O  — Si — O — Si — O — Si — O —

                                         ¦            ¦           ¦

                                        O          O         O

                                         ¦            ¦           ¦

 

Атомы кремния расположены в центре тетраэдра , а атомы кислорода — по углам его . Связи Si — O очень прочные , этим и объясняется большая твёрдость оксида кремния ( IV ) .

 

По химическим свойствам оксид кремния ( IV ) является кислотным оксидом . Непосредственно с водой он не реагирует , поэтому кремниевую кислоту можно получать только косвенным способом , действуя на соли кремниевой кислоты соляной или серной кислотами .

 

Na2SiO3 + 2HCl = h3SiO3 + 2NaCl

 

Сначала кислота образуется в растворе , а затем выподает в осадок .

Кремниевые кислота и её соли .

Кремниевая кислота — очень слабая кислота ( слабее угольной ) . При нагревании она разлогается по уравнению реакции :

 

h3SiO3 = SiO2 + h3O

 

Оксид кремния ( IV ) SiO2 отвечают несколько кремниевых кислот , различных по составу . Их состав в общем виде записывется формулой xSiO2 · yh3O .

Соли кремниевых кислот называются силикатами . В воде растворяются метасиликаты натрия и калия — Na2SiO3 и K2SiO3 , известные в технике под названием растворимого стекла ( или жидкое стекло ) . Их получают , прокаливая песок с едким натром или содой .

 

SiO2 + 2NaOH = Na2SiO3 + h3O

 

SiO2 + Na2CO3 = Na2SiO3 + CO2

Лит.: Красюк Б. А.,Грибов А. И. Полупроводники — германий и кремний.

Вы читаете, статья на тему кремний

znaesh-kak.com

Производство кремния

По распространенности кремний в земной коре занимает 2-ое пространство следуя за кислородом, сталкивается основным образом в повторяющемся виде кислородных синтезов (силикаты, кварц и т.д.). Высочайшей чистоты кремний применяется в полупроводниковых техниках, а технические чистоты ( от 96 до 99% ) – в цветной и черной металлургии для извлечения сплавов по нежелезному принципу(силумина и др.), изготовления силицидов, и раскисления сплавов и стали(устранение кислорода), легирования (кремнистые сплавы и стали, используемые в электрических оборудованиях) и т.д.

Железный кремний является основой для сверхтехнологичной индустрии. Кремний — считается главным фотоэлементом, применяемым для солнечных батарей, для компьютеров, полупроводников и тд.

Кстати, создание металлургического кремния полностью безотходно. Сверху печи прикрепленны воздуховоды, и вся пыль улетучивается в газоочистку, в котором улавливаются микрочастицы. Данная пыль кремния является полезным продуктом в иной части изготовления. К примеру, ранее в Европе кварц переплавляли лишь для такого, чтоб его позже размолоть и сделать добавкой для бетона, а также в растворы, которые владеют чрезвычайно большим укрепляющим свойством. Кварцевая кристаллическая сетка чрезвычайно крепкая. И бетон маркой 900, возможно получить лишь с поддержкой кремния.
 

Что возможно совершить с техническим кремнием?


Технологическая цепь в производстве кремния все еще продолжается: металлургический кремний, затем поликремний, далее монокристаллический кремний и завершающим этапом являются кремниевые пластинки. В последствии очищения металлургический кремний перегоняют, превращая в экологически вредные соединения хлора: трихлорсилан либо дихлорсилан. В последствии крайней очистки в ректификационном процессе и колоннах осаждения выходит поликремний, в котором концентрация примесей не превосходит десятитысячной доли процента. Затем его переплавляют в монокристаллический материал, а монокристаллы разрезают на пластинки. Вот так получают 80 процентов монокристаллического кремния, применяемого в электронике.

 

 

Процесс изготовления кремния


1. В процессе изготовления на заводе получают 2 типа продукта:

 

 

  • металлический кремний (с чистотой не ниже 98,5%, применяемый в химической и аллюминивой отраслях)
  • пыль кремниевая (ультрадисперсный источник, получаемый в ходе газоочистки печей, он используется в изготовлении особокрепких сухих строительных смесей)

 


В промышленности кремний технической чистоты производят, восстанавливая расплавление SiO2 коксом при температуре примерно 1800 градусов Цельсия в руднотермических печках шахтного типа. Чистота приобретенного таковым образом кремния может достигать 99,9 %(главные примеси — углерод, сплавы).

Главным аппаратом для выплавки технического кремния считается дуговая рудотермическая одно-трехфазная электрическая печка силой от 8 до 25 МВА. Печка представляет собой выпуклый металлической кожух с дном, футерованные огнеустойчивой кладкой.

Снабжение энергией печи исполняется при помощи электрода, используемого из графита. Электроды самоспекающиеся в технологии производства кремния не используются из-за вероятности загрязнения продукта электродной массой и кожуха электрода (кальций, алюминий, железо). Электрические свойства восстановительного процесса поддерживаются с помощью печного трансформатора, который соединен с электродом высокоамперной сетью, в которой мощность тока составляет 40-80 кА. По мере расхода электрода они удлиняются при помощи устройств перепуска. Регулирование данной силы тока в электроде исполняется методом смещения электрода по вертикальной оси.

Производство кремния идет фактически постоянно через лётку(отверстие в футеровке)в железную футерованную изложницу.

В печке с шунтированной дугой идет возобновление кремния за счет кремнезёма кварцита углеродом восстановителем. Абстрактная температура начального процесса изготовления 1670 градусов Цельсия. К главным видам восстановителей относятся: нефтекокс, древесный уголь(сосновый и берёзовый), неподвижный уголь.

С рудотермической печки, жидкий кварц попадает в ковш из которого он переливается по различным формам.

В формах железный кремний охлаждается и застывает.

После ожидания кремний дробят на маленькие кусочки гидромолотом.

Потом готовая продукция запаковывается в бигбэги — пластмассовые мешки, вмещающие 1000 килограммов металлургического кремния, а затем отправляются заказчикам.

 

promplace.ru

Производство металлургического кремния: victorborisov — LiveJournal


Сегодня мы с вами отправляемся на завод Silicium Kazakhstan, который производит металлический кремний карботермическим способом с использованием специальных рудотермических печей. Это один из крупнейших заводов в стране и единственный кремниевый завод в Казахстане. Завод был запущен осенью 2010 года.

По распространенности в земной коре кремний занимает второе место после кислорода, встречается главным образом в виде кислородных соединений (кварц, силикаты и.т.д.). Кремний высокой чистоты используется в полупроводниковой технике, а технической чистоты (96–99% Si) – в черной и цветной металлургии для получения сплавов на нежелезной основе (силумина и др.), легирования (кремнистые стали и сплавы, применяемые в электрооборудовании) и раскисления стали и сплавов (удаления кислорода), производства силицидов и.т.д.


В процессе производства на заводе получают два вида продукции:
— металлический кремний (с чистотой не менее 98,5%, применяемый в алюминиевой и химической отраслях)
— кремниевую пыль (ультрадисперсный материал, получаемый в процессе газоочистки печей, он применяется в производстве особопрочных сухих строительных смесей)

2. В промышленности кремний технической чистоты получают, восстанавливая расплав SiO2 коксом при температуре около 1800 градусов цельсия в руднотермических печах шахтного типа. Чистота полученного таким образом кремния может достигать 99,9 % (основные примеси — углерод, металлы).

3. Основным агрегатом для выплавки технического кремния является дуговая рудотермическая одно-трехфазная электропечь мощностью от 8 до 25 МВА. Печь представляет собой круглый стальной кожух с днищем, футерованные огнеупорной кладкой. Подина (днище) и часть высоты стен футеруются графитовыми блоками, следующий слой магнезитовым кирпичом и внешний слой – шамотом (пористый кирпич из специальной огнеупорной глины).

4. Подача энергии в рабочее пространство печи осуществляется с помощью электрода, выполненного из графита. Самоспекающиеся электроды в технологии кремния не применяются по причине возможного загрязнения продукта компонентами кожуха электрода и электродной массы (железо, кальций, алюминий). Электрические параметры восстановительного процесса обеспечиваются с помощью печного трансформатора, соединенного с электродом высокоамперной короткой сетью, в которой сила тока составляет 40-80 кА. По мере торцевого расхода электрода они периодически удлиняется с помощью механизмов перепуска. Регулировка заданной силы тока в электроде осуществляется путем перещения электрода по вертикальной оси.

5. Выпуск кремния осуществляется практически непрерывно через лётку (отверстие в футеровке) в стальную футерованную изложницу.

6. В печи с шунтированной дугой происходит восстановление кремния из кремнезёма кварцита углеродом восстановителя. Теоретическая температура начала процесса 1670 градусов цельсия. К основным типам восстановителей относятся: древесный уголь (берёзовый, сосновый), нефтекокс, каменный уголь.

7. Из рудотермической печи, расплавленный кремний попадает в ковш из которого он переливается по формам.

8. Сейчас на заводе работает одна печь, в ближайшее время будет пущена вторая, и тогда производственная мощность завода составит 30 тыс. тонн металлургического кремния в год. Кроме этого, выпускаемая продукция в дальнейшем будет поступать на завод поликристаллического кремния: его строительство в Омске начинается в этом году. Сейчас же готовая продукция экспортируется в Евросоюз.

9. Кстати, рыночная цена металлического кремния — 2500 евро за тонну.

10. Завод потребяет огромное количество электроэнергии для поддержания температуры в печи. Производство работает круглосуточно. А при первом запуске печи на ее разогрев до рабочей температуры потребовалось около двух недель.

11. На заводе в качестве сырья для производства металлургического кремния применяется жильный кварц из Улытаутского района.

12. В формах металлический кремний охлаждается и застывает.

13. Металлический кремний является основой для высокотехнологичной промышленности. Кремний — это и фотоэлементы для солнечных батарей, и полупроводники для компьютеров, и многое, многое другое.

14. Кстати, производство металлургического кремния абсолютно безотходно. Над печью стоят воздуховоды, и вся пыль уходит в газоочистку, где улавливаются микрочастицы. Эта кремниевая пыль является полезным продуктом в другой части производства. Например, раньше в Европе кварц переплавляли только для того, чтобы его потом размолоть и добавить в бетон, в растворы, которые обладают очень большим укрепляющим свойством. Кварцевая кристаллическая решетка очень прочная. И 900-ю марку бетона можно получить только с помощью кремния. А есть еще гидроизоляционные замазки, ударопрочные полы, эта продукция используется для укрепления тоннелей метро.

15. После остывания кремний дробят на мелкие куски гидромолотом.

16. Затем готовая продукция упаковывается в бигбэги — пластиковые мешки, вмещающие 1000 килограмм металлургического кремния и отправляется заказчикам.

17. Что можно сделать с техническим кремнием? Технологическая цепочка в производстве кремния продолжается: металлургический кремний — поликремний — монокристаллический кремний — кремниевые пластины. Для дальнейшей очистки металлургический кремний перегоняют, превращая в экологически вредные соединения хлора: дихлорсилан или трихлорсилан. После очистки последних в больших ректификационных колоннах и процессов осаждения получается поликремний, где концентрация примесей не превышает десятитысячной доли процента. После этого его переплавляют в монокристаллический материал, а монокристаллы режут на пластины. Так получают до 80% монокристаллического кремния, используемого в электронике.

Особенно рекомендую посмотреть видео, в котором отображены практически все этапы производства технического кремния:

Смотрите в ближайшее время репортажи с этого завода в журналах russos и gelio.

victorborisov.livejournal.com

Кремний химические свойства — Знаешь как

Содержание статьи

Химический знак кремния Si, атомный вес 28,086, заряд ядра +14. Кремний, как и углерод, располагается в главной подгруппе IV группы, в третьем периоде. Это аналог углерода. Электронная конфигурация электронных слоев атома кремния ls22s22p63s23p2. Строение внешнего электронного слоя

Кремний строение внешнего электронного слоя

Структура внешнего электронного слоя аналогична структуре атома углерода.
Кремний встречается в виде двух аллотропных видоизменений — аморфного и кристаллического.
Аморфный кремний — порошок буроватого цвета, обладающий несколько большей химической активностью, чем кристаллический. При обычной температуре реагирует с фтором:
Si + 2F2 = SiF4 при 400° — с кислородом
Si + O2 = SiO2
в расплавах — с металлами:
2Mg + Si = Mg2Si
Кристаллический кремний — твердое хрупкое вещество с металлическим блеском. Он обладает хорошей тепло- и электропроводностью, легко растворяется в расплавленных металлах, образуя сплавы. Сплав кремния с алюминием называется силумином, сплав кремния с железом — ферросилицием. Плотность кремния 2,4. Температура плавления 1415°, температура кипения 2360°. Кристаллический кремний — вещество довольно инертное и в химические реакции вступает с трудом. С кислотами, несмотря на хорошо заметные металлические свойства, кремний не реагирует, а со щелочами вступает в реакцию, образуя соли кремниевой кислоты и водород:
Si + 2КОН + Н2О = K2SiO2 + 2h3

■  36. В чем сходство и в чем различие электронных структур атомов кремния и углерода?
37. Как объяснить с точки зрения электронной структуры атома кремния, почему металлические свойства более характерны для кремния, чем для углерода?
38. Перечислите химические свойства кремния. (См. Ответ)

Кремний в природе. Двуокись кремния

В природе кремний распространен очень широко. Примерно 25% земной коры приходится на кремний. Значительная часть природного кремния представлена двуокисью кремния SiO2. В очень чистом кристаллическом состоянии двуокись кремния встречается в виде минерала, называемого горным хрусталем. Двуокись кремния и двуокись углерода по химическому составу являются аналогами, однако двуокись углерода — это газ, а двуокись кремния — твердое вещество. В отличие от молекулярной кристаллической решетки СO2 двуокись кремния SiO2 кристаллизуется в виде атомной кристаллической решетки, каждая ячейка которой представляет собой тетраэдр с атомом кремния в центре и атомами кислорода по углам. Это объясняется тем, что атом кремния имеет больший радиус, чем атом углерода, и вокруг него могут разместиться не 2, а 4 кислородных атома. Различием в строении кристаллической решетки объясняется различие свойств этих веществ. На рис. 69 показаны внешний вид кристалла природного кварца, состоящего из чистой двуокиси кремния, и ее структурная формула.

Кремний двуокись структурная формула

Рис. 60. Структурная формула двуокиси кремния (а) и кристаллы природного кварца (б)

Кристаллическая двуокись кремния наиболее часто встречается в виде песка, который имеет белый цвет, если не загрязнен глинистыми примесями желтого цвета. Помимо песка, двуокись кремния часто встречается в виде очень твердого минерала — кремния (гидратированная двуокись кремния). Кристаллическая двуокись кремния, окрашенная в различные примеси, образует драгоценные и полудрагоценные камни — агат, аметист, яшму. Почти чистая двуокись кремния встречается также в виде кварца и кварцита. Свободной двуокиси кремния в земной коре 12%, в составе различных горных пород — около 43%. В общей сложности более 50% земной коры состоит из двуокиси кремния.
Кремний входит в состав самых различных горных пород и минералов — глины, гранитов, сиенитов, слюд, полевых шпатов и пр.

Твердая двуокись углерода, не плавясь, возгоняется при —78,5°. Температура плавления двуокиси кремния около 1.713°. Она весьма тугоплавка. Плотность 2,65. Коэффициент расширения двуокиси кремния очень мал. Это имеет очень большое значение при применении посуды из кварцевого стекла. В воде двуокись кремния не растворяется и с ней не реагирует, несмотря на то, что это кислотный окисел и ему соответствует кремниевая кислота h3SiO3. Двуокись углерода в воде, как известно, растворима. С кислотами, кроме плавиковой кислоты HF, двуокись кремния не реагирует, со щелочами дает соли.

Кристаллы природного кварца

Кристаллы природного кварца

Рис. 69. Структурная формула двуокиси кремния (а) и кристаллы природного кварца (б).
При накаливании двуокиси кремния с углем происходит восстановление кремния, а затем его соединение с углеродом и образование карборунда по уравнению:
SiO2 + 2С = SiC + СО2. Карборунд обладает высокой твердостью, к кислотам устойчив, а щелочами разрушается.

■ 39. По каким свойствам двуокиси кремния можно судить о ее кристаллической решетке? (См. Ответ)
40. В виде каких минералов двуокись кремния встречается в природе?
41. Что такое карборунд? (См. Ответ)

Кремниевая кислота. Силикаты

Кремниевая кислота h3SiO3 является кислотой очень слабой и малоустойчивой. При нагревании она постепенно разлагается на воду и двуокись кремния:
h3SiO3 = h3O + SiO2

В воде кремниевая кислота практически нерастворима, но может легко давать коллоидные растворы.
Кремниевая кислота образует соли, которые называются силикатами. Силикаты широко встречаются в природе. Природные силикаты — это довольно сложные вещества. Состав их обычно изображается как соединение нескольких окислов. Если в состав природных силикатов входит окись алюминия, они называются алюмосиликатами. Таковы белая глина, (каолин) Al2O3 · 2SiO2 · 2h3O, полевой шпат К2O · Al2O3 · 6SiO2, слюда
К2O · Al2O3 · 6SiO2 · 2Н2O. Многие природные силикаты в чистом виде являются драгоценными камнями, например аквамарин,топаз, изумруд и др.
Из искусственных силикатов следует отметить силикат натрия Na2SiO3 — один из немногих растворимых в воде силикатов. Его называют растворимым стеклом, а раствор — жидким стеклом.

Силикаты широко применяются в технике. Растворимым стеклом пропитывают ткани и древесину для предохранения их от воспламенения. Жидкое стекло входит в состав огнеупорных замазок для склеивания стекла, фарфора, камня. Силикаты и алюмосиликаты являются основой в производстве стекла, фарфора, фаянса, цемента, бетона, кирпича и различных керамических изделий. В растворе силикаты легко гидролизуются.

■ 42. Что такое алюмосиликаты? Чем они отличаются от силикатов?
43. Что такое жидкое стекло и для каких целей оно применяется? (См. Ответ)

Стекло

Сырьем для производства стекла являются сода Na2CO3, известняк СаСO3 и песок SiO2. Все составные части стеклянной шихты тщательно очищают, смешивают и сплавляют при температуре около 1400°. В процессе сплавления протекают следующие реакции:
Na2CO3 + SiO2= Na2SiO3 + CO2↑

CaCO3 + SiO2 = CaSiO 3+ CO2↑
Фактически в состав стекла входят силикаты натрия и кальция, а также избыток SO2, поэтому состав обычного оконного стекла: Na2O · CaO · 6SiO2. Стеклянную шихту нагревают при температуре 1500° до тех пор, пока полностью не удалится двуокись углерода. Затем стекло охлаждают до температуры 1200°, при которой оно становится вязким. Как всякое аморфное вещество, стекло размягчается и затвердевает постепенно, поэтому оно является хорошим пластическим материалом. Вязкую стеклянную массу пропускают через щель, в результате чего образуется стеклянный лист. Горячий стеклянный лист вытягивают валками, доводя до определенных размеров и постепенно охлаждая током воздуха. Затем его обрезают по краям и разрезают на листы определенного формата.

■ 44. Приведите уравнения реакций, протекающих при получении стекла, и состав оконного стекла. (См. Ответ)

Стекло — вещество аморфное, прозрачное, в воде практически нерастворимо, но если измельчить его в мелкую пыль и смешать с небольшим количеством воды, то в полученной смеси с помощью фенолфталеина можно обнаружить щелочь. При длительном хранении щелочей в стеклянной посуде избыток SiO2 в стекле очень медленно реагирует со щелочью и стекло постепенно утрачивает прозрачность.
Стекло стало известно людям более чем за 3000 лет до нашей эры. В древности получали стекла почти такого же состава, как и в настоящее время, но древние мастера руководствовались лишь собственной интуицией. В 1750 г. М. В. Ломоносов сумел разработать научные основы получения стекла. За 4 года М. В. Ломоносов собрал много рецептов изготовления разных стекол, особенно цветных. На построенной им стекольной фабрике было изготовлено большое количество образцов стекла, которые сохранились до наших дней. В настоящее время используются стекла разного состава, обладающие различными свойствами.

Кварцевое стекло состоит из почти чистой двуокиси кремния и выплавляется из горного хрусталя. Его очень важной особенностью является то, что коэффициент расширения у него незначительный, почти в 15 раз меньше, чем у обычного стекла. Посуду из такого стекла можно раскалить докрасна в пламени горелки и после этого опустить в холодную воду; при этом никаких изменений со стеклом не произойдет. Кварцевое стекло не задерживает ультрафиолетовых лучей, а если окрасить его никелевыми солями в черный цвет, то оно будет задерживать все видимые лучи спектра, но для ультрафиолетовых лучей останется прозрачным.
На кварцевое стекло не действуют кислоты и вода, но щелочи его заметно разъедают. Кварцевое стекло более хрупко, чем обычное. Лабораторное стекло содержит около 70% SiО2, 9% Na2О, 5% К2О 8% СаО, 5% Аl2O3, 3% В2O3 (состав стекол приводится не для запоминания).

В промышленности находят применение стекла иен-ское и пирекс. Иенское стекло содержит около 65% Si02, 15% В2O3, 12% ВаО, 4% ZnO, 4% Аl2O3. Оно прочно, устойчиво к механическим воздействиям, имеет малый коэффициент расширения, устойчиво к щелочам.
Стекло пирекс содержит 81% SiO2, 12% В2O3, 4% Na2O, 2% Аl2O3, 0,5% As2O3, 0,2% К2O, 0,3% СаО. Оно обладает такими же свойствами, как иенское стекло, но в еще большей степени, особенно после закалки, зато менее устойчиво к щелочам. Из стекла пирекс изготовляют предметы домашнего обихода, подвергающиеся нагреванию, а также детали некоторых промышленных установок, работающие при низких и высоких температурах.

Разные качества стеклу придают некоторые добавки. Например, примеси окислов ванадия дают стекло, полностью задерживающее ультрафиолетовые лучи.
Получают также и стекло, окрашенное в различные цвета. Еще М. В. Ломоносов изготовил несколько тысяч образцов цветного стекла разной окраски и оттенков для своих мозаичных картин. В настоящее время методы окраски стекла детально разработаны. Соединения марганца окрашивают стекло в фиолетовый цвет, кобальта — в синий. Золото, распыленное в массе стекла в виде коллоидных частиц, придает ему рубиновую окраску и т. д. Свинцовые соединения придают стеклу блеск, подобный блеску горного хрусталя, поэтому оно называется хрустальным. Такое стекло легко поддается обработке, огранке. Изделия из него очень красиво преломляют свет. При окраске этого стекла различными добавками получается цветное хрустальное стекло.

Если расплавленное стекло смешать с веществами, которые при разложении образуют большое количество газов, то последние, выделяясь, вспенивают стекло, образуя пеностекло. Такое стекло очень легкое, хорошо обрабатывается, является прекрасным электро- и тепло-изолятором. Оно было впервые получено проф. И. И. Китайгородским.
Вытягивая из стекла нити, можно получить так называемое стекловолокно. Если пропитать уложенное слоями стекловолокно синтетическими смолами, то получается очень прочный, не поддающийся гниению, прекрасно обрабатывающийся строительный материал, так называемый стеклотекстолит. Интересно, что чем тоньше стекловолокно, тем выше его прочность. Стекловолокно также применяется для изготовления спецодежды.
Стеклянная вата является ценным материалом, через который можно фильтровать сильные кислоты и щелочи, не фильтрующиеся через бумагу. Кроме того, стеклянная вата является хорошим теплоизолирующим веществом.

■ 44. От чего зависят свойства стекол разных видов? (См. Ответ)

Керамика

Из алюмосиликатов особенно важна белая глина — каолин, являющаяся основой для получения фарфора и фаянса. Производство фарфора — чрезвычайно древняя отрасль хозяйства. Родина фарфора — Китай. В России фарфор был получен впервые в XVIIIв. Д, И. Виноградовым.
Сырьем для получения фарфора и фаянса, помимо каолина, служат песок и вода. Смесь каолина, песка и воды подвергают тщательному тонкому размолу в шаровых мельницах, затем отфильтровывают избыток воды и хорошо вымешанную пластичную массу направляют на формовку изделий. После формовки изделия подвергают сушке и обжигу в туннельных печах непрерывного действия, где их сначала разогревают, затем обжигают и, наконец, охлаждают. После этого изделия проходят дальнейшую обработку — покрытие глазурью, нанесение рисунка керамическими красками. После каждой стадии изделия обжигают. В результате фарфор получается белым, гладким и блестящим. В тонких слоях он просвечивает. Фаянс порист и не просвечивает.

Из красной глины формуют кирпичи, черепицу, глиняную посуду, керамические кольца для насадки в поглотительных и промывных башнях разных химических производств, цветочные горшки. Их также обжигают, чтобы они не размягчались водой, стали механически прочными.

Цемент. Бетон

Соединения кремния служат основой для получения цемента — вяжущего материала, незаменимого в строительстве. Сырьем для получения цемента являются глина и известняк. Эту смесь обжигают в огромной наклонной трубчатой вращающейся печи, куда непрерывно загружают сырье. После обжига при 1200—1300° из отверстия, расположенного на другом конце печи, непрерывно выходит спекшаяся масса — клинкер. После размола клинкер превращается в цемент. В состав цемента входят главным образом силикаты. Если цемент смешать с водой до образования густой кашицы, а затем оставить на некоторое время на воздухе, то вода вступит в реакцию с веществами цемента, образуя кристаллогидраты и другие твердые соединения, что приводит к затвердеванию («схватыванию») цемента. Такой цемент уже не переводится в прежнее состояние, поэтому до употребления цемент стараются беречь от воды. Процесс твердения цемента является длительным, и настоящую прочность он приобретает лишь через месяц. Правда, существуют разные сорта цемента. Рассмотренный нами обычный цемент называется силикатным, или портландцементом. Из глинозема, известняка и двуокиси кремния изготовляют быстро твердеющий глиноземистый цемент.

Если смешать цемент со щебнем или гравием, то получается бетон, являющийся уже самостоятельным строительным материалом. Щебень и гравий называются наполнителями. Бетон обладает высокой прочностью и выдерживает большие нагрузки. Он водостоек, огнестоек. При нагревании почти не теряет прочности, так как теплопроводность его очень мала. Бетон морозостоек, ослабляет радиоактивные излучения, поэтому его используют как строительный материал для гидротехнических сооружений, для защитных оболочек ядерных реакторов. Бетоном обмуровывают котлы. Если смешать цемент с пенообразователем, то образуется пронизанный множеством ячеек пенобетон. Такой бетон является хорошим звукоизолятором и еще меньше, чем обычный бетон, проводит тепло.

Если бетоном залить стальной каркас, то получится железобетон. Каркас называется арматурой. Из железобетона изготовляют блоки и панели для домостроения, трубы, мосты, перекрытия, шпалы.

■ 46. Составьте и заполните следующую таблицу. (См. Ответ)

Силикатная промышленность
         

Статья на тему Кремний химические свойства

znaesh-kak.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *